人工智能和机器人领域著名的莫拉维克悖论表示:和传统假设不同,对计算机而言,实现逻辑推理等人类高级智慧只需要相对很少的计算能力,而实现感知、运动等低等级智慧却需要巨大的计算资源。
已经在“人类最后智力骄傲”上碾压人类的Google DeepMind的人工智能程序AlphaGo,却连挪动一枚小小的棋子都需要人类帮助才能完成,是莫拉维克悖论有力的证明,让计算机在智力测试或者下棋中展现出一个成年人的水平是相对容易的,但是要让计算机有如一岁小孩般的感知和行动能力却是相当困难。
而在机器人系统中,自主导航是一项核心技术,是赋予机器人感知和行动能力的关键。下面为大家盘点一下自主移动机器人常用的四种导航定位方法。
激光全局定位系统一般由激光器旋转机构、反射镜、光电接收装置和数据采集与传输装置等部分组成。工作时,激光经过旋转镜面机构向外发射,当扫描到由后向反射器构成的合作路标时,反射光经光电接收器件处理作为检测信号,启动数据采集程序读取旋转机构的码盘数据(目标的测量角度值),然后通过通讯传递到上位机进行数据处理,根据已知路标的位置和检测到的信息,就可以计算出传感器当前在路标坐标系下的位置和方向,从而达到进一步导航定位的目的。
如图是一个LDSR激光传感器系统原理框图。激光测距具有光束窄、平行性好、散射小、测距方向分辨率高等优点,但同时它也受环境因素干扰比较大,因此采用激光测距时怎样对采 集的信号进行去噪等也是一个比较大的难题,另外激光测距也存在盲区,所以光靠激光进行导航定位实现起来比较困难,在工业应用中,一般还是在特定范围内的工业现场检测,如检测管道裂缝等场合应用较多。
红外传感技术经常被用在多关节机器人避障系统中,用来构成大面积机器人“敏感皮肤”,覆盖在机器人手臂表面,可以检测机器人手臂运行过程中遇到的各种物体。典型的红外传感器工作原理如图所示。该传感器包括一个可以发射红外光的固态发光二极管和一个用作接收器的固态光敏二极管。由红外发光管发射经过调制的信号,红外光敏管接收目标物反射的红外调制信号,环境红外光干扰的消除由信号调制和专用红外滤光片保证。设输出信号Vo 代表反射光强度的电压输出,则Vo是探头至工件间距离的函数:
Vo=f(x,p)
式中,p—工件反射系数。p与目标物表面颜色、粗糙度有关。x—探头至工件间距离。
当工件为p 值一致的同类目标物时,x 和Vo 一一对应。x可通过对各种目标物的接近测量实验数据进行插值得到。这样通过红外传感器就可以测出机器人距离目标物体的位置,进而通过其他的信息处理方法也就可以对移动机器人进行导航定位。
超声波导航定位的工作原理也与激光和红外类似,通常是由超声波传感器的发射探头发射出超声波,超声波在介质中遇到障碍物而返回到接收装置。通过接收自身发 射的超声波反射信号,根据超声波发出及回波接收时间差及传播速度,计算出传播距离S,就能得到障碍物到机器人的距离,即有公式: S=Tv/2 式中,T—超声波发射和接收的时间差;v—超声波在介质中传播的波速。
当然,也有不少移动机器人导航定位中用到的是分开的发射和接收装置,在环境地图中布置多个接收装置,而在移动机器人上安装发射探头。
由于超声波传感器具有成本低廉、采集信息速率快、距离分辨率高等优点,长期以来被广泛地应用到移动机器人的导航定位中。而且它采集环境信息时不需要复杂的图像配备技术,因此测距速度快、实时性好。同时,超声波传感器也不易受到如天 气条件、环境光照及障碍物阴影、表面粗糙度等外界环境条件的影响。超声波进行导航定位已经被广泛应用到各种移动机器人的感知系统中。
(摘选自中国电子网)